Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Children (Basel) ; 10(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38136067

ABSTRACT

Hyperphenylalaninemia (HPA), which includes phenylketonuria (PKU), is a genetic autosomal recessive disorder arising from a deficiency in the enzyme named phenylalanine hydroxylase (PAH). Affected patients can experience severe and irreversible neurological impairments when phenylalanine (Phe) blood concentration exceeds 360 µmol/L (6 mg/dL). Here, we describe a female HPA patient who was born in Mexico to Cuban non-consanguineous parents and identified by newborn screening, and who bears the previously unreported PAH NM_000277.3(PAH):c.[229T>C];[1222C>T] or p.[Tyr77His];[Arg408Trp] genotype. At diagnosis, the patient showed a Phe blood level of 321 µmol/L (5.3 mg/dL), indicative of mild HPA. Neither of the PAH variants found in this patient had been previously reported in the mutational PAH spectrum of the Mexican population. The c.229T>C or p.(Tyr77His) PAH variant was previously related to mild HPA in the Swedish population. Our in silico structural analysis and molecular docking showed that mutated His 77 residue is located in the allosteric site of PAH at the interface of the two monomers. The PDBsum in silico tool predicted that this variant would cause minimal structural disturbance of the protein interface in the presence of Phe at the allosteric site. Docking studies revealed that these structural changes might be attenuated by the allosteric effect of Phe. Given the classic PKU phenotype conditioned by the "Celtic" or c.[1222C>T] or p.(Arg408Trp) PAH variant, which is the second variant in this patient, we propose that p.(Tyr77His) has a hypomorphic feature that could explain her mild HPA phenotype. Our results show the importance of following up on cases detected by NBS and the value of genetic studies and in silico tools that aid in the establishment of correct therapeutic strategies.

2.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834089

ABSTRACT

Trisomy X is the most frequent sex chromosome anomaly in women, but it is often underdiagnosed postnatally because most patients do not show any clinical manifestation. It is estimated that only 10% of patients with trisomy X are diagnosed by clinical findings. Thus, it has been proposed that the clinical spectrum is not yet fully delimited, and additional uncommon or atypical clinical manifestations could be related to this entity. The present report describes a female carrying trisomy X but presenting atypical manifestations, including severe intellectual disability, short stature, thymus hypoplasia, and congenital hypothyroidism (CH). These clinical findings were initially attributed to trisomy X. However, chromosome microarray analysis (CMA) subsequently revealed that the patient also bears a heterozygous 304-kb deletion at 16p11.2. This pathogenic copy-number variant (CNV) encompasses 13 genes, including TUFM. Some authors recommend that when a phenotype differs from that described for an identified microdeletion, the presence of pathogenic variants in the non-deleted allele should be considered to assess for an autosomal recessive disorder; thus, we used a panel of 697 genes to rule out a pathogenic variant in the non-deleted TUFM allele. We discuss the possible phenotypic modifications that might be related to an additional CNV in individuals with sex chromosome aneuploidy (SCA), as seen in our patient. The presence of karyotype-demonstrated trisomy X and CMA-identified 16p11.2 deletion highlights the importance of always correlating a patient's clinical phenotype with the results of genetic studies. When the phenotype includes unusual manifestations and/or exhibits discrepancies with that described in the literature, as exemplified by our patient, a more extensive analysis should be undertaken to enable a correct diagnosis that will support proper management, genetic counseling, and medical follow-up.


Subject(s)
Sex Chromosome Aberrations , Trisomy , Humans , Female , Trisomy/diagnosis , Trisomy/genetics , Chromosome Deletion , Phenotype , Karyotype
3.
Children (Basel) ; 10(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37892277

ABSTRACT

Tuberous sclerosis complex (TSC) is a genetic disorder, frequently characterized by early dermatological manifestations. The recognition and adequate description of these dermatological manifestations are of utmost importance for early diagnosis, allowing for the implementation of therapeutic and preventive measures. Fibrous cephalic plaques (FCPs) are considered a major diagnostic criterion for TSC, as FCPs are the most specific skin lesions of TSC. The localization, consistency, color, and size of FCPs vary widely, which can cause diagnostic delay, especially in patients with atypical presentations. The present report describes a female TSC patient with a confirmed heterozygous pathogenic genotype, NG_005895.1 (TSC2_v001): c.2640-1G>T, who presented with uncommon large and bilateral FCPs causing bilateral ptosis and marked with hyperostosis of the diploe that generated an asymmetry of the brain parenchyma. Differential diagnoses considered initially in this patient due to the atypical FCPs are described.

4.
Clin Dysmorphol ; 32(1): 7-13, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36503917

ABSTRACT

The 3MC syndromes types 1-3 (MIM#257920, 265050 and 248340, respectively) are rare autosomal recessive genetic disorders caused by pathogenic variants in genes encoding the lectin complement pathway. Patients with 3MC syndrome have a distinctive facial phenotype including hypertelorism, highly arched eyebrows and ptosis. A significant number of patients have bilateral cleft lip and palate and they often exhibit genitourinary and skeletal anomalies. A clinical clue to 3MC syndrome is the presence of a characteristic caudal appendage. Genetic variants in MASP1, COLEC11 and COLEC10 genes have been identified as the causation of this syndrome, yet relatively few patients have been described so far. We consolidate and expand current knowledge of phenotypic features and molecular diagnosis of 3MC syndrome by describing the clinical and molecular findings in five patients. This includes follow-up of two brothers whose clinical phenotypes were first reported by Crisponi et al in 1999. Our study contributes to the evolving clinical and molecular spectrum of 3MC syndrome.


Subject(s)
Cleft Lip , Cleft Palate , Hypertelorism , Humans , Male , Phenotype , Face , Collectins
5.
J Cutan Pathol ; 50(6): 481-486, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36229934

ABSTRACT

Folliculocystic and collagen hamartoma (FCCH) is a rare entity with only 18 reported cases worldwide. Of them, most are found in patients diagnosed with tuberous sclerosis complex (TSC). FCCH has distinctive histopathologic features, including collagen deposition in the dermis, perifollicular fibrosis, and comedones with keratin-containing cysts lined by infundibular epithelium. We report three patients with a definitive TSC clinical diagnosis in whom clinical, histopathologic, and molecular features were studied to establish if there exists a genotype-phenotype correlation. The molecular results showed different heterozygous pathogenic variants (PV) in TSC2 in each patient: NM_000548.4:c.5024C>T, NG_005895.1:c.1599+1G>T, and NM_000548.4:c.2297_2298dup, to our knowledge; the latter PV has not been reported in public databases. The same PVs were identified as heterozygous in the tumor tissue samples, none of which yielded evidence of a TSC2 second hit. Because all FCCH patients with available molecular diagnosis carry a pathogenic genotype in TSC1 or TSC2, we suggest that FCCH should be considered as a new and uncommon diagnostic manifestation in the TSC consensus international diagnostic criteria. The early recognition of FCCH by clinicians could prompt the identification of new TSC cases. Interestingly, our molecular findings suggest that one of the patients described herein is a probable case of somatic mosaicism.


Subject(s)
Hamartoma , Tuberous Sclerosis , Humans , Tuberous Sclerosis/diagnosis , Tuberous Sclerosis/genetics , Tuberous Sclerosis/complications , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Hamartoma/diagnosis , Hamartoma/genetics , Collagen , Mutation
6.
Life (Basel) ; 12(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36362878

ABSTRACT

The clinical diagnosis of oculo-auriculo-vertebral spectrum (OAVS) is established when microtia is present in association with hemifacial hypoplasia (HH) and/or ocular, vertebral, and/or renal malformations. Genetic and non-genetic factors have been associated with microtia/OAVS. Although the etiology remains unknown in most patients, some cases may have an autosomal dominant, autosomal recessive, or multifactorial inheritance. Among the possible genetic factors, gene−gene interactions may play important roles in the etiology of complex diseases, but the literature lacks related reports in OAVS patients. Therefore, we performed a gene−variant interaction analysis within five microtia/OAVS candidate genes (HOXA2, TCOF1, SALL1, EYA1 and TBX1) in 49 unrelated OAVS Mexican patients (25 familial and 24 sporadic cases). A statistically significant intergenic interaction (p-value < 0.001) was identified between variants p.(Pro1099Arg) TCOF1 (rs1136103) and p.(Leu858=) SALL1 (rs1965024). This intergenic interaction may suggest that the products of these genes could participate in pathways related to craniofacial alterations, such as the retinoic acid (RA) pathway. The absence of clearly pathogenic variants in any of the analyzed genes does not support a monogenic etiology for microtia/OAVS involving these genes in our patients. Our findings could suggest that in addition to high-throughput genomic approaches, future gene−gene interaction analyses could contribute to improving our understanding of the etiology of microtia/OAVS.

7.
Clin Biochem ; 109-110: 64-73, 2022.
Article in English | MEDLINE | ID: mdl-36089067

ABSTRACT

BACKGROUND: Newborn screening for glucose-6-phosphate dehydrogenase deficiency (G6PDd) was implemented in Mexico beginning in 2017. In a Mexican population, genotyping analysis of G6PD as a second-tier method identified a previously unreported missense variant, p.(Ser184Cys), which we propose to call "Toluca", and the extremely rare p.(Gln195His) or "Tainan" variant, which was previously described in the Taiwanese population as a Class II allele through in silico evaluations. Here, we sought to perform in vitro biochemical characterizations of the Toluca and Tainan G6PD natural variants and describe their associated phenotypes. METHODS: The "Toluca" and "Tainan" variants were identified in three unrelated G6PDd newborn males, two of whom lacked evidence of acute hemolytic anemia (AHA) or neonatal hyperbilirubinemia (NHB). We constructed wild-type (WT), Tainan, and Toluca G6PD recombinant enzymes and performed in vitro assessments. RESULTS: Both variants had diminished G6PD expression, decreased affinities for glucose-6-phosphate and NADP+ substrates, significant decreases in catalytic efficiency (∼97 % with respect to WT-G6PD), and diminished thermostabilities that were partially rescued by NADP+. In silico protein modeling predicted that the variants would have destabilizing effects on the protein tertiary structure, potentially reducing the enzyme half-lives and/or catalytic efficiencies. CONCLUSION: Our data suggest that G6PD "Tainan" and "Toluca" are potential Class II natural variants, which agrees with the absence of chronic nonspherocytic hemolytic anemia (CNSHA) in our patients. It remains to be determined whether these variants represent high-risk genetic factors for developing CNSHA, AHA, and/or NHB.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Humans , Male , Infant, Newborn , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/chemistry , Neonatal Screening , NADP , Mexico
8.
Diagnostics (Basel) ; 12(5)2022 May 19.
Article in English | MEDLINE | ID: mdl-35626423

ABSTRACT

We present an unusual Mexican patient affected with mucopolysaccharidosis type IIIB (MPS IIIB; also called Sanfilippo B syndrome, MIM #252920) bearing clinical features that have not previously been described for MPS IIIB (growth arrest, hypogonadotropic hypogonadism, and congenital heart disease). Chromosomal microarray analysis was useful in identifying runs of homozygosity at 17q11.1-q21.33 and supporting the diagnosis of an underlying autosomal recessive condition. Sanger sequencing of NAGLU (17q21.2, MIM*609701) allowed us to identify a pathogenic homozygous p.(Arg234Cys) genotype. This NAGLU allele could be related to that previously described in an Iberian MPS IIIB founder haplotype; results from the polymorphic marker D17S800 and rs2071046 led us to hypothesize that it may have been introduced to Mexico through the Spanish settlement. The analysis of a clinical exome sequencing ruled out other monogenic etiologies for the previously undescribed clinical MPS IIIB manifestations. Our findings contribute to further delineating the MPS IIIB phenotype and suggest possible phenotype-genotype correlations.

9.
Am J Med Genet A ; 188(5): 1515-1525, 2022 05.
Article in English | MEDLINE | ID: mdl-35119197

ABSTRACT

A diagnosis of oculo-auriculo-vertebral spectrum (OAVS) is established when microtia is present in association with hemifacial hypoplasia (HH) and/or ocular, vertebral, and/or renal malformations. There is no consensus on which imaging studies should be used to rule out variable expressivity and distinguish "sporadic" from "familial" patients. This observational and descriptive study was performed in a Mexican population of 51 patients (32 males, 19 females, 0-18 years old) with microtia/OAVS, and their available parents. A clinical history, genealogy, and physical examination were obtained from all included patients, as were a computed tomography (CT) scan of the ear, audiological evaluation, orthopantomography, complete spine radiography, and renal ultrasound. The same approach was completed in their available parents (51 mothers and 40 fathers), excluding the CT scan and audiological evaluation. By genealogy, 53% of patients were classified as "sporadic"; of the "familial" patients, at least 79.1% had suggestion of a multifactorial inheritance. In the available parents, orthopantomography, complete spine X-ray, and renal ultrasound identified the following OAVS-related manifestations: HH (16.2%, n = 14/86), vertebral alterations (10.9%, n = 10/91), and renal anomalies (2.2%, n = 2/90). Our evaluation of the parents allowed three patients to be reclassified from "sporadic" to "familial" (5.8%, n = 3/51). Our proposed clinical and imaging approach allowed the identification of variable expressivity that more clearly distinguished between "sporadic" and "familial" OAVS patients, which is of utmost importance in providing proper genetic counseling to these families.


Subject(s)
Congenital Microtia , Goldenhar Syndrome , Adolescent , Child , Child, Preschool , Female , Goldenhar Syndrome/diagnostic imaging , Goldenhar Syndrome/genetics , Humans , Infant , Infant, Newborn , Male , Mexico , Spine/diagnostic imaging , Tomography, X-Ray Computed
10.
World J Clin Cases ; 9(29): 8797-8803, 2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34734058

ABSTRACT

BACKGROUND: Identifying a potential single monogenetic disorder in healthy couples is costly due to the Assisted Reproduction facilities' current methodology for screening, which focuses on the detecting multiple genetic disorders at once. Here, we report the successful application of a low-cost and fast preimplantation genetic testing for monogenic/single gene defects (PGT-M) approach for detecting propionic acidemia (PA) in embryos obtained from a confirmed heterozygous propionyl-CoA carboxylase alpha subunit (PCCA) couple. CASE SUMMARY: A fertile 32-years old Mexican couple with denied consanguinity sought antenatal genetic counseling. They were suspected obligate PA carriers due to a previous deceased PA male newborn with an unknown PCCA/propionyl-CoA carboxylase beta subunit (PCCB) genotype. Next-Generation Sequencing revealed a heterozygous genotype for a pathogenic PCCA variant (c.2041-1G>T, ClinVar:RCV000802701.1; dbSNP:rs1367867218) in both parents. The couple requested in vitro fertilization (IVF) and PGT-M for PA. From IVF, 12 oocytes were collected and fertilized, of which two resulted in high-quality embryos. Trophectoderm biopsies and Whole Genome Amplification by a fragmentation/amplification-based method were performed and revealed that the two embryos were euploid. End-point polymerase chain reaction and further Sanger sequencing of the exon-intron borders revealed a wild-type PCCA male embryo and a heterozygous c.2041-1G>T female embryo. Both embryos were transferred, resulting in a clinical pregnancy and the delivery of a healthy male newborn (38 wk, weight: 4080 g, length: 49 cm, APGAR 9/9). The absence of PA was confirmed by expanded newborn screening. CONCLUSION: We show that using PGT-M with Whole Genome Amplification templates, coupled with IVF, can reduce the transmission of a pathogenic variant of the PCCA gene.

11.
Genes (Basel) ; 12(11)2021 10 23.
Article in English | MEDLINE | ID: mdl-34828281

ABSTRACT

Establishing the genotypes of patients with hyperphenylalaninemia (HPA)/phenylketonuria (PKU, MIM#261600) has been considered a cornerstone for rational medical management. However, knowledge of the phenylalanine hydroxylase gene (PAH) mutational spectrum in Latin American populations is still limited. Herein, we aim to update the mutational PAH spectrum in the largest cohort of HPA/PKU Mexican patients (N = 124) reported to date. The biallelic PAH genotype was investigated by Sanger automated sequencing, and genotypes were correlated with documented biochemical phenotypes and theoretical tetrahydrobiopterin (BH4) responsiveness. Patients were biochemically classified as having classic PKU (50%, 62/124), mild PKU (20.2%, 25/124) and mild HPA (29.8%, 37/124). Furthermore, 78.2% of the included patients (97/124) were identified by newborn screening. A total of 60 different pathogenic variants were identified, including three novel ones (c. 23del, c. 625_626insC and c. 1315 + 5_1315 + 6insGTGTAACAG), the main categories being missense changes (58%, 35/60) and those affecting the catalytic domain (56.6%, 34/60), and c. 60 + 5G > T was the most frequent variant (14.5%, 36/248) mainly restricted (69.2%) to patients from the central and western parts of Mexico. These 60 types of variants constituted 100 different biallelic PAH genotypes, with the predominance of compound-heterozygous ones (96/124, 77%). The expected BH4 responsiveness based on the PAH genotype was estimated in 52% of patients (65/124), mainly due to the p. (Val388Met) (rs62516101) allele. Instead, our study identified 27 null variants with an allelic phenotype value of zero, with a predominance of c. 60 + 5G > T, which predicts the absence of BH4 responsiveness. An identical genotype reported in BIOPKUdb was found in 92/124 (74%) of our patients, leading to a genotype-phenotype concordance in 80/92 (86.9%) of them. The high number of variants found confirms the heterogeneous and complex mutational landscape of HPA/PKU in Mexico.


Subject(s)
Mutation , Phenylalanine Hydroxylase/chemistry , Phenylalanine Hydroxylase/genetics , Phenylketonurias/genetics , Sequence Analysis, DNA/methods , Amino Acid Substitution , Catalytic Domain , Female , Genotyping Techniques , Humans , Infant, Newborn , Loss of Function Mutation , Male , Mexico , Models, Molecular , Mutation, Missense , Neonatal Screening , Protein Conformation
12.
Children (Basel) ; 8(6)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070861

ABSTRACT

Mexico shows a high birth prevalence of congenital hypothyroidism (CH) due to thyroid dysgenesis (TD). PAX8 defects underlie only 1% of these cases and NKX2-1 does not seem to be involved. Here, we analyzed other TD-related genes in 128 non-related Mexican patients (females 77.3%; 6 months to 16.6 years) with non-syndromic CH-TD diagnosis established by clinical evaluation, thyroid hormone serum profiling, and scintigraphy (74%) or ultrasonography (26%). We performed Sanger sequencing of FOXE1, NKX2-5, and TSHR and evaluated copy number variations (CNVs) in TSHR, FOXE1, PAX8, and NKX2-1 by multiplex ligation-dependent probe amplification. Odds ratios for TD risk were explored for FOXE1 polyalanine stretches [polyAla-rs71369530] in cases and controls (N = 116). Five rare missense changes cataloged as benign (NKX2-5:p.(Ala119Ser)-rs137852684), of unknown significance (FOXE1:p.(Ala335Gly)-rs543372757; TSHR:p.(Asp118Asn)-rs1414102266), and likely pathogenic (FOXE1:p.(Gly124Arg)-rs774035532; TSHR:p.(Trp422Arg)-rs746029360) accounted for 1.5% (N = 2/128) of clinically relevant genotypes (supported in part by protein modeling) in CH-TD. No CNVs were identified, nor did polyAla > 14 alanines in FOXE1 significantly protect against TD. The present and previously published data collectively show that small clinically relevant germline variants in PAX8, FOXE1, and TSHR are found in only a very small proportion (2.5%) of isolated CH-TD Mexican patients.

13.
Orphanet J Rare Dis ; 16(1): 103, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637102

ABSTRACT

BACKGROUND: Glucose-6-phosphate dehydrogenase deficiency (G6PDd) newborn screening is still a matter of debate due to its highly heterogeneous birth prevalence and clinical expression, as well as, the lack of enough knowledge on its natural history. Herein, we describe the early natural clinical course and the underlying GDPD genotypes in infants with G6PDd detected by newborn screening and later studied in a single follow-up center. G6PDd newborns were categorized into three groups: group 1: hospitalized with or without neonatal jaundice (NNJ); group 2: non-hospitalized with NNJ; and group 3: asymptomatic. Frequencies of homozygous UGT1A1*28 (rs34983651) genotypes among G6PDd patients with or without NNJ were also explored. RESULTS: A total of 81 newborns (80 males, one female) were included. Most individuals (46.9%) had NNJ without other symptoms, followed by asymptomatic (42.0%) and hospitalized (11.1%) patients, although the hospitalization of only 3 of these patients was related to G6PDd, including NNJ or acute hemolytic anemia (AHA). Nine different G6PDd genotypes were found; the G6PD A-202A/376G genotype was the most frequent (60.5%), followed by the G6PD A-376G/968C (22.2%) and the Union-Maewo (rs398123546, 7.4%) genotypes. These genotypes produce a wide range of clinical and biochemical phenotypes with significant overlapping residual enzymatic activity values among class I, II or III variants. Some G6PD A-202A/376G individuals had enzymatic values that were close to the cutoff value (5.3 U/g Hb, 4.6 and 4.8 U/g Hb in the groups with and without NNJ, respectively), while others showed extremely low enzymatic values (1.1 U/g Hb and 1.4 U/g Hb in the groups with and without NNJ, respectively). Homozygosity for UGT1A1*28 among G6PDd patients with (11.9%, N = 5/42) or without (10.3%, N = 4/39) NNJ did not shown significant statistical difference (p = 0.611). CONCLUSION: Wide variability in residual enzymatic activity was noted in G6PDd individuals with the same G6PD genotype. This feature, along with a documented heterogeneous mutational spectrum, makes it difficult to categorize G6PD variants according to current WHO classification and precludes the prediction of complications such as AHA, which can occur even with > 10% of residual enzymatic activity and/or be associated with the common and mild G6PD A-376G/968C and G6PD A-202A/376G haplotypes.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Jaundice, Neonatal , Female , Genotype , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/genetics , Haplotypes , Humans , Infant, Newborn , Male , Neonatal Screening
14.
Cytogenet Genome Res ; 161(12): 556-563, 2021.
Article in English | MEDLINE | ID: mdl-35021179

ABSTRACT

5q14.3 deletion syndrome (MIM#613443) is an uncommon but well-known syndrome characterized by intellectual disability, epilepsy, hypotonia, brain malformations, and facial dysmorphism. Most patients with this syndrome have lost one copy of the MEF2C gene (MIM*600662), whose haploinsufficiency is considered to be responsible for the distinctive phenotype. To date, nearly 40 cases have been reported; the deletion size and clinical spectrum are variable, and at least 6 cases without MEF2C involvement have been documented. We herein report the clinical and cytogenomic findings of an 11-year-old girl who has a 5q14.3q21.1 de novo deletion that does not involve MEF2C but shares the clinical features described in other reported patients. Moreover, she additionally presents with bilateral cleft-lip palate (CLP), which has not been previously reported as a feature of the syndrome. The most frequent syndromic forms of CLP were ruled out in our patient mainly by clinical examination, and Sanger sequencing was performed to discard the presence of a TBX22 gene (MIM*300307) defect. Our report suggests CLP as a possible unreported feature and redefines the critical phenotypic regions of 5q14.3 deletion syndrome.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosomes, Human, Pair 5/genetics , Cleft Lip/genetics , Cleft Palate/genetics , Child , Epilepsy/congenital , Epilepsy/genetics , Female , Humans , Intellectual Disability/genetics , MEF2 Transcription Factors , Syndrome
15.
Cleft Palate Craniofac J ; 58(9): 1128-1134, 2021 09.
Article in English | MEDLINE | ID: mdl-33334172

ABSTRACT

OBJECTIVE: To screen for interferon regulatory factor 6 (IRF6) pathogenic variants in patients clinically diagnosed with nonsyndromic cleft lip palate (NSCL/P) and establish the proportion of misdiagnosed Van der Woude syndrome (VWS) cases, which could have biased previous NSCL/P case-control association studies. DESIGN: Retrospective case series. SETTING: Tertiary care children's hospital. PARTICIPANTS: One hundred seventy-two unrelated Mexican patients with NSCL/P, 128 of whom had previously been included in a NSCL/P case-control association study. MAIN OUTCOMES MEASUREMENTS: Sanger sequencing of the 9 IRF6 exons were performed, all variants respect with sequence reference were reported and classified for their pathogenic significance according to the American College of Medical Genetics and Genomics guidelines. RESULTS: Seven percent of cases were familial. No pathogenic variant was identified in IRF6. We identified 12 previously reported benign variants; their frequencies did not significantly differ from those reported for individuals of Mexican ancestry. Three of them were uncommon intronic variants not reported in ClinVar. The rs2235371 and rs2235375 variants, which were previously analyzed in a NSCL/P case-control association study (containing 132 patients, 128 of whom were analyzed herein) did not show discordant association results comparing to the 370 controls from the previous study. CONCLUSIONS: The misdiagnosis of IRF6-related VWS as NSCL/P appears to be infrequent in our sample, suggesting that mutational screening of IRF6 would have a low diagnostic yield in patients with NSCL/P. The absence of IRF6 pathogenic alleles could be related to the application of an exhaustive clinical evaluation that discarded the syndromic forms and/or the low proportion of familial cases included.


Subject(s)
Cleft Lip , Cleft Palate , Child , Cleft Lip/genetics , Cleft Palate/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Interferon Regulatory Factors/genetics , Polymorphism, Single Nucleotide , Retrospective Studies
16.
Cytogenet Genome Res ; 160(4): 177-184, 2020.
Article in English | MEDLINE | ID: mdl-32369810

ABSTRACT

Nonmosaic trisomy involving 19p13.3p13.2 is a very uncommon abnormality. At present, only 12 cases with this genetic condition have been reported in the literature. However, the size of the trisomic fragment is heterogeneous and thus, the clinical spectrum is variable. Herein, we report the clinical and cytogenetic characterization of a 5-year-old boy with nonmosaic trisomy 19p13.3p13.2 (7.38 Mb), generated by a derivative Y chromosome resulting from a de novo unbalanced translocation t(Y;19)(q12;p13.2). We demonstrated the integrity of the euchromatic regions in the abnormal Y chromosome to confirm the pure trisomy 19p. Our patient shares some clinical features described in other reported patients with pure trisomy 19p, such as craniofacial anomalies, developmental delay, and heart defects. Different to previous reports, our case exhibits frontal pachygyria and polymicrogyria. These additional features contribute to further delineate the clinical spectrum of trisomy 19p13.3p13.2.


Subject(s)
Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Y/genetics , Lissencephaly/genetics , Polymicrogyria/genetics , Translocation, Genetic/genetics , Trisomy/genetics , Child, Preschool , Humans , Lissencephaly/pathology , Male , Mosaicism , Parents , Polymicrogyria/pathology , Trisomy/pathology , Young Adult
17.
Sci Rep ; 10(1): 6589, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32313033

ABSTRACT

The aim of this study was to improve knowledge of the mutational spectrum causing tuberous sclerosis complex (TSC) in a sample of Mexican patients, given the limited information available regarding this disease in Mexico and Latin America. Four different molecular techniques were implemented to identify from single nucleotide variants to large rearrangements in the TSC1 and TSC2 genes of 66 unrelated Mexican-descent patients that clinically fulfilled the criteria for a definitive TSC diagnosis. The mutation detection rate was 94%, TSC2 pathogenic variants (PV) prevailed over TSC1 PV (77% vs. 23%) and a recurrent mutation site (hotspot) was observed in TSC1 exon 15. Interestingly, 40% of the identified mutations had not been previously reported. The wide range of novels PV made it difficult to establish any genotype-phenotype correlation, but most of the PV conditioned neurological involvement (intellectual disability and epilepsy). Our 3D protein modeling of two variants classified as likely pathogenic demonstrated that they could alter the structure and function of the hamartin (TSC1) or tuberin (TSC2) proteins. Molecular analyses of parents and first-degree affected family members of the index cases enabled us to distinguish familial (18%) from sporadic (82%) cases and to identify one case of apparent gonadal mosaicism.


Subject(s)
Genetic Predisposition to Disease , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis/genetics , Adolescent , Child , Child, Preschool , DNA Mutational Analysis , Epilepsy/genetics , Epilepsy/pathology , Female , Genetic Association Studies , Genotype , Humans , Infant , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Mexico/epidemiology , Mutation/genetics , Phenotype , Tuberous Sclerosis/epidemiology , Tuberous Sclerosis/pathology , Young Adult
18.
Nefrología (Madrid) ; 40(1): 91-98, ene.-feb. 2020. tab
Article in English | IBECS | ID: ibc-198958

ABSTRACT

About 80% of patients with tuberous sclerosis complex (TSC) present renal involvement, usually as angiomyolipomas followed by cystic disease. An early diagnosis of polycystic kidney disease (PKD) in such patients is frequently related to the TSC2/PKD1 contiguous gene syndrome (PKDTS). Molecular confirmation of PKDTS is important for a prompt diagnosis, which can be complicated by the phenotypic heterogeneity of PKD and the absence of a clear phenotype-genotype correlation. Herein, we report three PKDTS pediatric patients. The case 3 did not present a classic PKDTS phenotype, having only one observable cyst on renal ultrasound at age 4 and multiple small cysts on magnetic resonance imaging at age 15. In this patient, chromosomal microarray analysis showed a gross deletion of 230.8 kb that involved TSC2, PKD1 and 13 other protein-coding genes, plus a heterozygous duplication of a previously undescribed copy number variant of 242.9kb that involved six protein-coding genes, including SSTR5, in the 16p13.3 region. Given the observations that the case 3 presented the mildest renal phenotype, harbored three copies of SSTR5, and the reported inhibition of cystogenesis (specially in liver) observed with somatostatin analogs in some patients with autosomal dominant PKD, it can be hypothesized that other genetic factors as the gene dosage of SSTR5 may influence the PKD phenotype and the progression of the disease; however, future work is needed to examine this possibility


Un 80% de los pacientes con complejo de esclerosis tuberosa (CET) presentan afectación renal, generalmente angiomiolipomas, seguidos de enfermedad quística. Un diagnóstico temprano de la enfermedad renal poliquística (ERP) en estos pacientes se relaciona con frecuencia con el síndrome de genes contiguos TSC2/PKD1 (PKDTS). La confirmación molecular de PKDTS es importante para establecer un diagnóstico oportuno, que puede complicarse por la heterogeneidad fenotípica de PKD y la ausencia de una clara correlación entre fenotipo y genotipo. En este artículo presentamos los casos de 3 pacientes pediátricos con PKDTS. El caso 3 no presentó un fenotipo PKDTS clásico, con solo un quiste observable en la ecografía renal a los 4 años y numerosos quistes pequeños en la resonancia magnética a los 15 años. En este paciente, el análisis de microarreglos para análisis cromosómico global mostró una eliminación total de 230,8 kb que involucró a TSC2, PKD1 y otros 13 genes codificantes de proteínas, más una duplicación heterocigota para una variante de número de copias no descrita previamente de 242,9 kb que involucró a 6 genes codificantes de proteínas, entre ellos SSTR5, en la región 16p13.3. Dado que el caso 3 mostraba el fenotipo renal menos severo, contaba con tres copias del gen SSTR5 y a que se ha observado una inhibición en la cistogénesis (especialmente en el hígado) con los análogos de somatostatina en algunos pacientes con ERP autosómica dominante, podemos hipotetizar que existen otros factores genéticos como la dosis génica de SSTR5 que pudieran influir en el fenotipo y la progresión de la ERP; sin embargo, se necesitan estudios adicionales para investigar esta posibilidad


Subject(s)
Humans , Male , Female , Infant , Child, Preschool , Child , Adolescent , Genetic Variation , Polycystic Kidney Diseases/genetics , TRPP Cation Channels/genetics , Tuberous Sclerosis/genetics , Exons/genetics , Gene Deletion , Phenotype , Polycystic Kidney Diseases , Polycystic Kidney Diseases/diagnostic imaging , Syndrome , Tuberous Sclerosis/diagnostic imaging
19.
Nefrologia (Engl Ed) ; 40(1): 91-98, 2020.
Article in English, Spanish | MEDLINE | ID: mdl-31176519

ABSTRACT

About 80% of patients with tuberous sclerosis complex (TSC) present renal involvement, usually as angiomyolipomas followed by cystic disease. An early diagnosis of polycystic kidney disease (PKD) in such patients is frequently related to the TSC2/PKD1 contiguous gene syndrome (PKDTS). Molecular confirmation of PKDTS is important for a prompt diagnosis, which can be complicated by the phenotypic heterogeneity of PKD and the absence of a clear phenotype-genotype correlation. Herein, we report three PKDTS pediatric patients. The case 3 did not present a classic PKDTS phenotype, having only one observable cyst on renal ultrasound at age 4 and multiple small cysts on magnetic resonance imaging at age 15. In this patient, chromosomal microarray analysis showed a gross deletion of 230.8kb that involved TSC2, PKD1 and 13 other protein-coding genes, plus a heterozygous duplication of a previously undescribed copy number variant of 242.9kb that involved six protein-coding genes, including SSTR5, in the 16p13.3 region. Given the observations that the case 3 presented the mildest renal phenotype, harbored three copies of SSTR5, and the reported inhibition of cystogenesis (specially in liver) observed with somatostatin analogs in some patients with autosomal dominant PKD, it can be hypothesized that other genetic factors as the gene dosage of SSTR5 may influence the PKD phenotype and the progression of the disease; however, future work is needed to examine this possibility.


Subject(s)
Genetic Variation , Polycystic Kidney Diseases/genetics , TRPP Cation Channels/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis/genetics , Adolescent , Child , Child, Preschool , Exons/genetics , Female , Gene Deletion , Humans , Infant , Male , Phenotype , Polycystic Kidney Diseases/diagnostic imaging , Syndrome , Tuberous Sclerosis/diagnostic imaging
20.
World J Clin Cases ; 7(23): 4029-4035, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31832405

ABSTRACT

BACKGROUND: Laron syndrome (LS) is an autosomal recessive hereditary condition affecting only 1/1000000 births. The cause is associated with mutations in the growth hormone (GH) receptor (GHR), leading to GH insensitivity. LS patients typically present with severe growth retardation, obesity, and abnormal sexual maturation. Currently, LS diagnosis is performed post-delivery. Therefore, we assessed the efficiency of Pre-implantation Genetic Testing (PGT) coupled with monoplex-polymerase chain reaction (PCR) technology for detecting this monogenic disease in embryos from a couple confirmed as LS heterozygous carriers. CASE SUMMARY: The couple LS-carriers were confirmed by the presence of a first child born with LS. The couple underwent a standard in vitro fertilization (IVF) protocol. DNA was collected from trophectoderm cells from day 5 embryos. Whole genome amplification (WGA) was performed using a Sureplex DNA Amplification System and analyzed by PCR, targeting the deletion of the exons 5 and 6 in the GHR gene as well as PGT by Next-generation Sequencing (Illumina). Eleven embryos were collected and analyzed. 27.3% were the wild type for GHR, 45.5% were heterozygotes, and 18.2% homozygous mutants. One embryo yielded no results. Three 2-embryos transfers were performed; 2 normal homozygous and four heterozygous carriers were selected for transfer. The first two transfers were unsuccessful, whereas the final transfer with two heterozygous embryos resulted in clinical pregnancy. The genomic composition of the fetus was verified, applying the same techniques using amniocytes, extracted after 21 wk of the ongoing pregnancy. The fetus was confirmed as GHR deletion in exon 5-6, carrier. A non-affected baby was born. CONCLUSION: Here, we present a case demonstrating that using WGA as a template in addition to PCR targeting specific gene regions, exons 5 and 6 on the GHR gene, could identify LS carrier embryos. This provides evidence that WGA and PCR serve as an excellent tool to detect this specific monogenic disease in IVF embryos, thus allowing selection of candidate embryos for transfer successfully when a specific inherited genetic mutation/disease is suspected.

SELECTION OF CITATIONS
SEARCH DETAIL
...